1976) and its D-erythro isomer (Ružić-Toroš \& Lazarini, 1978), 2 -acetamido-2,3-dideoxy-5,6-O-iso-propylidene-D-threo-hex-2-enono-1,4-lactone (RužićToroš \& Leban, 1978), and L-ascorbic acid (Hvoslef, 1968).

Molecules are connected by hydrogen bonds between acetamido and carbonyl groups, N $\mathrm{H}(\mathrm{N}) \cdots \mathrm{O}(1), 3.000(4) \AA$, forming infinite chains along b. The angle $\mathrm{N}-\mathrm{H}(\mathrm{N}) \cdots \mathrm{O}(1)$ is $171(2)^{\circ}$.

The authors thank MSc M. Bruvo for collecting the intensities at the Department of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, and Dr S. G. Yates, US Department of Agriculture, Northern Regional Research Center, Peoria, Illinois for the crystals used in this study.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Hvoslef, J. (1968). Acta Cryst. B24, 23-35.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson. M. M. (1980). MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Ružic-Toroš, Ž. \& Kojić-Prodić, B. (1976). Acta Cryst. B32, 2333-2336.
Ružić-Toroš, Ž. \& Lazarinı, F. (1978). Acta Cryıst. B34, 854-858.
Ružıć-Toroš, Ž. \& Leban, I. (1978). Acta Cryst. B34, 1226-1230.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Нeck, H. \& Flack, H. (1976). The XRay 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sundaralingam, M. (1968). Biopolymers, 6, 189-213.
Tookey, H. L., Yates, S. G., Ellis, J. J., Grove, M. D. \& Nichols, R. E. (1972). J. Am. Vet. Med. Assoc. 160(11), 1522-1526.
Wilson, A. J. C. (1942). Nature (London), 150, 151-152.
Yates, S. G., Tookey, H. L., Ellis, J. J. \& Burkhardt, H. J. (1968). Phytochemistry, 7, 139-146.

Acta Cryst. (1982). B38, 1666-1669

Structure of (E)-2-Ethynyl-2-methoxy-5-phenyladamantane* \dagger

By S. Y. Lin, M. Ionov, \ddagger Y. Okaya, D. M. Chiou and W. J. le Noble
Chemsitry Department, State University of New York at Stony Brook, Stony Brook, New York 11794, USA

(Received 17 April 1979; accepted 5 January 1982)

Abstract

C}_{19} \mathrm{H}_{22} \mathrm{O}\), orthorhombic, $P c 2_{1} n, a=$ 6.972 (2), $b=20.214$ (7), $c=21.025$ (6) $\AA, V=$ $2961 \AA^{3}, Z=8, \rho_{o}=1.199 \mathrm{~g} \mathrm{~cm}^{-3} . R=0.057$ for 2065 observed reflections measured on a diffractometer using $\mathrm{Cu} K \alpha$ radiation. The two chemically independent molecules in the asymmetric unit are arranged around a pseudo center of symmetry and the pairs thus generated pack in the structure using the symmetry of the space group. The OCH_{3} group is in the anti configuration with respect to the phenyl group.

Introduction. This report is part of our systematic investigation into bridgehead phenyl-substituted

[^0]adamantanes to determine their configurations and to study reaction mechanisms involving these compounds. Thus, in a methanolysis of (E) - and (Z)-2-chloro-2-ethynyl-5-phenyladamantanes, § $\quad \mathrm{C}_{10} \mathrm{H}_{13} \cdot \mathrm{C}_{6} \mathrm{H}_{5} .(\mathrm{C} \equiv$ $\mathrm{CH}) . \mathrm{Cl}$, these two isomers both produce the same mixture of 2-ethynyl-2-methoxy-5-phenyladamantanes. Regardless of the configuration of the starting isomer, it was observed that the product is a mixture of $3: 1$ in favor of one of the configurations, (Z) (le Noble, Chiou \& Okaya, 1978). It was then postulated that the two reactions go through a common intermediate, and this is attacked preferentially from one side by $\mathrm{CH}_{3} \mathrm{OH}$ because of a remote directing effect of the phenyl group in the 5 -position. In view of this remarkable preference in the collapse of the intermediate, it seemed desirable to confirm the
\S The configurations of these isomers were unambiguously determined by crystallographic methods (Okaya, Lin, Chiou \& le Noble, 1980).

Table 1. Fractional atomic coordinates and isotropic thermal parameters

Table 1 (cont.)

	x	y	z	$\begin{gathered} B \\ \left(\AA^{2}\right) \end{gathered}$
$\mathrm{H}(6 \mathrm{~B})$	0.807 (5)	0.507 (2)	$0 \cdot 298$ (2)	$6 \cdot 5$ (10)
$\mathrm{H}\left(6 B^{\prime}\right)$	0.847 (5)	0.425 (3)	$0 \cdot 286$ (3)	7.9 (12)
$\mathrm{H}(7 B)$	1.083 (5)	0.481 (2)	$0 \cdot 226$ (2)	$6 \cdot 2$ (10)
$\mathrm{H}(8 B)$	0.924 (6)	0.575 (3)	$0 \cdot 206$ (3)	8.4 (15)
$\mathrm{H}\left(8 B^{\prime}\right)$	1.030 (6)	0.550 (2)	$0 \cdot 145$ (2)	$6 \cdot 5$ (9)
$\mathrm{H}(9 B)$	1.069 (6)	0.437 (3)	$0 \cdot 131$ (3)	9.4 (14)
$\mathrm{H}\left(9 B^{\prime}\right)$	0.973 (9)	0.374 (4)	$0 \cdot 183$ (3)	$12 \cdot 3$ (20)
$\mathrm{H}(10 \mathrm{~B})$	0.574 (8)	0.565 (4)	0.231 (3)	$4 \cdot 1$ (0)
$\mathrm{H}\left(10 B^{\prime}\right)$	0.436 (8)	0.529 (4)	$0 \cdot 180$ (4)	$5 \cdot 1$ (0)
$\mathrm{H}(2 p B)$	0.428 (9)	0.358 (4)	$0 \cdot 270$ (3)	4.0 (20)
$\mathrm{H}(3 p B)$	0.246 (6)	0.330 (2)	$0 \cdot 361$ (2)	5.0 (9)
$\mathrm{H}(4 p B)$	$0 \cdot 066$ (5)	0.427 (2)	0.419 (2)	$5 \cdot 3$ (9)
$\mathrm{H}(5 p B)$	$0 \cdot 230$ (9)	0.530 (3)	0.400 (2)	12.7(16)
$\mathrm{H}(6 p B)$	$0 \cdot 450$ (6)	0.555 (3)	$0 \cdot 310$ (2)	8.3 (13)
$\mathrm{H}(2 e B)$	0.219 (7)	0.490 (3)	0.018 (2)	11.2 (12)
$\mathrm{H}(1 \mathrm{mB})$	0.827 (7)	0.406 (3)	0.003 (2)	12.0 (18)
$\mathrm{H}(2 m B)$	0.937 (6)	0.463 (2)	-0.039 (2)	9.9 (13)
$\mathrm{H}(3 m B)$	0.741 (8)	0.471 (3)	-0.031 (2)	11.0 (14)

molecular configurations of the products by means of crystallographic studies.

The present compound, $\mathrm{C}_{10} \mathrm{H}_{13} . \mathrm{C}_{6} \mathrm{H}_{5}$. $(\mathrm{C} \equiv$ CH). OCH_{3}, has been chemically assigned the configuration E. The observed systematic absences lead to the choice of space groups as Pcmn or Pc2 n. The diffractometer data were collected on an Enraf-Nonius CAD-4A diffractometer, which is a part of a real-time in-house crystallographic system built around a resource-sharing PDP-11/45 computer (Okaya, 1978). The $\theta-2 \theta$ scan method was used for reflections below 65° in θ using $\mathrm{Cu} K \alpha$ radiation. In all, 2815 asymmetric reflections were collected out of which 2065 were classified to be observed by means of the 3σ criterion.

Although a statistical treatment of the magnitudes of E factors favors strongly the presence of centers of symmetry, repeated attempts in solving the structure by MULTAN (Germain, Main \& Woolfson, 1971) in Pcmn led to no satisfactory solution. It is also rather unusual for organic molecules of this type to form a structure with mirror symmetry as required by this space group. When the polar $P c 2, n$ space group was employed, the direct method quickly gave a reasonable starting structure as a solution; it was then refined by a full-matrix least-squares program using the EnrafNonius Structure Determination Package on the inhouse PDP 11/45 computer (Frenz, 1978). The function minimized was $\sum w\left(F_{o}^{2}-k F_{c}^{2}\right)^{2}$ with $w^{-1}=\mid \sigma_{\text {c.s. }} F_{o}^{2}+$ $\left.\left(0.03 F_{o}^{2}\right)^{2}\right]$, where $\sigma_{\text {c. . }}$ is the deviation depending on the counting statistics. All the H atoms have been located in difference Fourier maps and refined with isotropic temperature factors. The final disagreement factor, R, is 0.057 . The atomic scattering factors used in the calculations are those derived by Cromer \& Waber (1974). The atomic parameters thus determined
are tabulated in Table 1.* The two independent molecules required by the space-group symmetry are arbitrarily labeled A and B.

Discussion. The bond distances and angles were calculated from the atomic coordinates in Table 1; these are tabulated in Tables 2 and 3 . The numbering of the atoms used in the following discussion is shown in Fig. 1. The compound was determined to possess the E configuration as chemically assigned.

An interesting feature of the crystal structure is that the two structurally independent molecules in the asymmetric unit are arranged around a pseudo noncrystallographic center of symmetry at $x \simeq 0.0$ and $z \simeq$ $0.125\left(=\frac{1}{8}\right)$; the y parameter $(=0.342$ with respect to the origin on the b axis used in Table 1) has only relative significance because of the polar nature of the b axis. As shown in Table 1, observed deviation from this pseudo-centrosymmetry is relatively small (maximum $0.3 \AA$). It should be noted that no linear transformation of the cell results in Pcmn or any other space group with higher symmetry elements. The

[^1]

Fig. 1. The numbering of atoms used in the Discussion.
centrosymmetric pairs thus formed are arranged in the structure by satisfying the requirements of the polar space group $P c 2{ }_{1} n$. An ORTEP (Johnson, 1965) drawing of the pair is given in Fig. 2.

It is also obvious from the above structure that the two crystallographically different molecules exhibit almost identical orientations of the phenyl group with respect to the approximate mirror plane $\mid C(2)-C(5)-$ $C(6)-C(7)]$ through the adamantane moiety. The dihedral angles between these mirror and phenyl group planes are found to be 87 and 80° for A and B respectively. This situation is different from that found in two similar crystallographically independent molecules of (Z)-2-ethynyl-5-phenyl-2-adamantanol,

Table 2. Bond distances in \AA

	Molecule A	Molecule B		Molecule A	Molecule B
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.526(4)$	$1.536(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.518(5)$	$1.517(4)$
$\mathrm{C}(1)-\mathrm{C}(8)$	$1.514(5)$	$1.541(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.513(5)$	$1.528(5)$
$\mathrm{C}(1)-\mathrm{C}(10)$	$1.548(4)$	$1.545(4)$	$\mathrm{C}(7)-\mathrm{C}(9)$	$1.510(5)$	$1.531(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.542(5)$	$1.527(5)$	$\mathrm{C}(1 p)-\mathrm{C}(2 p)$	$1.383(4)$	$1.404(5)$
$\mathrm{C}(2)-\mathrm{C}(1 e)$	$1.484(4)$	$1.487(4)$	$\mathrm{C}(1 p)-\mathrm{C}(6 p)$	$1.385(4)$	$1.392(4)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.419(3)$	$1.441(3)$	$\mathrm{C}(2 p)-\mathrm{C}(3 p)$	$1.396(4)$	$1.391(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.568(4)$	$1.539(4)$	$\mathrm{C}(3 p)-\mathrm{C}(4 p)$	$1.393(6)$	$1.360(6)$
$\mathrm{C}(3)-\mathrm{C}(9)$	$1.528(5)$	$1.522(5)$	$\mathrm{C}(4 p)-\mathrm{C}(5 p)$	$1.342(6)$	$1.376(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.520(4)$	$1.543(4)$	$\mathrm{C}(5 p)-\mathrm{C}(6 p)$	$1.396(5)$	$1.385(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.531(4)$	$1.570(4)$	$\mathrm{C}(1 e)-\mathrm{C}(2 e)$	$1.158(4)$	$1.186(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.545(4)$	$1.537(4)$	$\mathrm{O}(1)-\mathrm{C}(1 m)$	$1.415(4)$	$1.415(4)$
$\mathrm{C}(5)-\mathrm{C}(1 p)$	$1.545(4)$	$1.484(4)$			

Table 3. Bond angles in degrees

	Molecule A	Molecule B		Molecule A	Molecule B		Molecule A	Molecule B
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	$110 \cdot 1$ (3)	109.7 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	110.1 (2)	111.5 (2)	$\mathrm{C}(3) \mathrm{C}(9)-\mathrm{C}(7)$	108.5 (3)	110.2 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$110 \cdot 3$ (3)	109.5 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$109 \cdot 1$ (2)	107.5 (2)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(5)$	109.9 (2)	111.6 (2)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(10)$	109.6 (2)	109.0 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	108.1 (2)	107.4 (2)	$\mathrm{C}(5)-\mathrm{C}(1 p)-\mathrm{C}(2 p)$	$120 \cdot 1$ (2)	122.8 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.7 (2)	108.3 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1 p)$	$111.2(2)$	$112 \cdot 6$ (2)	$\mathrm{C}(5)-\mathrm{C}(1 p)-\mathrm{C}(6 p)$	121.9 (3)	121.6 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(1 e)$	109.0 (3)	108.8 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	108.4 (2)	107.2 (2)	$\mathrm{C}(2 p)-\mathrm{C}(1 p)-\mathrm{C}(6 p)$	118.0 (3)	115.7 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	107.3 (2)	106.6 (3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(1 p)$	109.4 (2)	$110 \cdot 3$ (2)	$\mathrm{C}(1 p)-\mathrm{C}(2 p)-\mathrm{C}(3 p)$	121.2 (3)	121.8 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1 e)$	$110 \cdot 6$ (3)	111.7 (3)	$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(1 p)$	$110 \cdot 8(2)$	111.9 (2)	$\mathrm{C}(2 p)-\mathrm{C}(3 p)-\mathrm{C}(4 p)$	$120 \cdot 6$ (4)	120.2 (4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	112.9 (3)	112.9 (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	109.9 (2)	111.6 (2)	$\mathrm{C}(3 p)-\mathrm{C}(4 p)-\mathrm{C}(5 p)$	117.2 (4)	$120 \cdot 2$ (3)
$\mathrm{C}(1 e)-\mathrm{C}(2)-\mathrm{O}(1)$	108.4 (2)	108.3 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	111.6 (3)	109.9 (3)	$\mathrm{C}(4 p)-\mathrm{C}(5 p)-\mathrm{C}(6 p)$	123.7 (4)	119.6 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.2 (3)	109.3 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	110.4 (3)	109.6 (3)	$\mathrm{C}(1 p)-\mathrm{C}(6 p)-\mathrm{C}(5 p)$	119.3 (3)	122.7 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(9)$	109.4 (3)	110.7 (3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	109.4 (3)	$108 \cdot 1$ (3)	$\mathrm{C}(2)-\mathrm{C}(1 e)-\mathrm{C}(2 e)$	177.7 (4)	178.0 (3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(9)$	109.9 (3)	109.2 (3)	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	108.4 (3)	109.9 (2)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(1 \mathrm{~m})$	116.5 (2)	115.7 (2)

Fig. 2. An $O R T E P$ drawing of a pseudo-centrosymmetric pair.
$\mathrm{C}_{10} \mathrm{H}_{13} . \mathrm{C}_{6} \mathrm{H}_{5} .(\mathrm{C} \equiv \mathrm{CH}) . \mathrm{OH}$, (Okaya, Chiou \& le Noble, 1979). In this molecule the dihedral angles are quite different from each other (10.5 and 44.5°).

The observed bond distances and angles are all normal for this type of compound. The $\mathrm{C}(2 p)-$ $\mathrm{C}(1 p)-\mathrm{C}(6 p)$ angles of $115.7(3)$ and $118.0(3)^{\circ}$ are smaller than the normal angles of 120°. The appearance of smaller angles is common to all the phenyladamantanes studied by us (le Noble, Chiou, Mahuszyńska \& Okaya, 1977), and the structure serves as another example of the non-bonded steric-hindrance effect as discussed by Domenicano, Vaciago \& Coulson (1975). The steric effect around the methoxy bond is such that it is almost parallel to the $\mathrm{O}(1)-$ $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$ plane.

The molecules are arranged in the structure by the usual van der Waals interactions. No unusual intermolecular contacts were observed.

One of the authors (WJleN) wishes to acknowledge support by the National Science Foundation (NSF-CHE-7512847).

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B32, 221-234.
Frenz, B. (1978). Computing in Crystallography, edited by h. Schenk, R. Olthof-Hazeramp, h. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Johnson, C. K. (1965). ORTEP. Report ORNL-3974. Oak Ridge National Laboratory, Tennessee.
le Noble, W. J., Chou, D. M., Maluszyńska, H. \& Okaya, Y. (1977). Tetrahedron Lett. pp. 3865-3868.
Le Noble, W. J., Chiou, D. M. \& OкaYa, Y. (1978). J. Am. Chem. Soc. 100, 7743-7744.
Окауа, Y. (1978). Computing in Crystallography, edited by h. Schenk, R. Olthof-Hazekamp, h. van Koningsveld \& G. C. Bassi, pp. 153-166. Delft Univ. Press.
Окачa, Y., Chiou, D. M. \& le Noble, W. J. (1979). Acta Cryst. B35, 2268-2271.
Okaya, Y., Lin, S. Y., Chiou, D. M. \& le Noble, W. J. (1980). Acta Cryst. B36, 977-979.

Acta Cryst. (1982). B38, 1669-1671

Structure of 2-Ethynyl-2-adamantanol* \dagger

By S. Y. Lin, Y. Okaya, D. M. Chiou and W. J. le Noble
Chemistry Department, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

(Received 21 May 1979; accepted 5 January 1982)

Abstract

C}_{12} \mathrm{H}_{16} \mathrm{O}\), monoclinic, $P 2_{1} / c, a=6.820$ (2), $b=22.644(3), c=12.708$ (2) $\AA, \beta=94.5$ (2) ${ }^{\circ}, V=$ $1956.5 \AA^{3}, Z=8, \rho_{o} \simeq \rho_{c}=1.19 \mathrm{~g} \mathrm{~cm}^{-3} . R=5.0 \%$ for 2200 observed reflections measured on a diffractometer using $\mathrm{Cu} K \alpha$ radiation. The two crystallographically independent molecules in the asymmetric unit exhibit almost identical shapes and sizes. The hydroxyl group of one of the molecules forms a hydrogen bond of 2.839 (2) \AA with the hydroxyl O of the other molecule, which in turn is involved in an

[^2]intramolecular $\mathrm{O}-\mathrm{H} \cdots \pi$ hydrogen bond with the ethynyl group.

Introduction. An extensive study has been made in our Department on 2 -substituted- 5 -phenyladamantanes as probes to determine the stereochemical course of various reactions. In this connection, the configurations of a number of 2 -substituted-5-phenyladamantanes, especially those with a 2 -ethynyl group, have been determined. The present paper reports the structure of the parent alcohol, 2-ethynyl-2-adamantanol.

The diffraction data were obtained on an EnrafNonius CAD-4A diffractometer. The data collection range was up to 65° in θ, and the $\theta-2 \theta$ scan technique

[^0]: * IUPAC name: (E)-2-ethynyl-2-methoxy-5-phenyltricyclo[3.3.1.1 ${ }^{3,7}$]decane.
 \dagger Crystallographic Studies on Adamantanes. IV.
 \ddagger A USSR-State University Exchange Program Scholar. Current address: Chemistry Department, Moscow State University, Moscow 117234, USSR.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36639 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: *IUPAC name: 2-ethynyltricyclo[3.3.1.1 ${ }^{3,7}$ decan-2-ol.
 \dagger Crystallographic Studies on Adamantanes. V.

